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Abstract— This paper studies the ionized gas flow in the 
boundary layer on bodies of revolution with porous contour. 
The gas electroconductivity is assumed to be a  function of a 
longitudinal coordinate x.  
Saljnikov's version of the general similarity method is used 
for solution of the problem. The obtained generalized 
boundary layer equations are solved in a four-parametric 
localized approximation. Based on the results, conclusions 
on behavior of certain physical quantities in the boundary 
layer have been drawn. 
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I. INTRODUCTION 

This paper summaries results of our investigations of 
the ionized gas i.e. air flow in the boundary layer on 
bodies of revolution. Ionized gas flows in the conditions 
of equilibrium ionization. The contour of the body within 
the fluid is porous.   

The primary objective of this paper is to apply the 
general similarity method and to solve the obtained 
generalized boundary layer equations.  

The general similarity method was first used by 
Loitsianskii [1] and it was later improved by Saljnikov [2]. 
In its original version, it was successfully used for 
problems of dissociated gas flow in the boundary layer [3, 
4]. Saljnikov's version of this method was applied in the 
temperature and MHD boundary layer theory [5, 6], and 
for solution of dissociated and ionized gas flow in the 
boundary layer [7-11]. Both versions of the general 
similarity method are based on usage of a momentum 
equation and introduction of sets of similarity parameters. 
In this paper, Saljnikov's version of the general similarity 
method is applied.   

II. MATHEMATICAL MODEL

When aircrafts fly at supersonic speeds through the 
Earth's atmosphere, the temperature in the viscous 
boundary layer increases significantly. At high 
temperatures, gas (air) dissociation and ionization occur 
and the air becomes a multicomponent mixture of atoms, 
electrons and positively charged ions of oxygen, nitrogen 
etc. [12-14]. When the temperature in the air flow is high 
enough, thermochemical equilibrium is established. One 
of important properties of the ionized gas is its 
electroconductivity , which is a function of the 
temperature i.e., enthalpy [15]. If the ionized gas flows in 

the magnetic field of the power ),(mm xBB   an electric 

flow is formed in the gas. The electric flow generates 
Lorentz force and Joule's heat [15]. The 
electroconductivity is also assumed to be a function of the 
longitudinal coordinate x, i.e. that the electroconductivity 
variation law can be written as  

).(x  (1)

Therefore, for the case of the ionized gas flow in the 
magnetic field, the equations of the steady laminar 
boundary layer on bodies of revolution with porous wall 
[7, 15] take the following form: 
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The corresponding boundary conditions are: 

.for)(),(

,0for.const),(,0

ee

ww




yxhhxuu

yhhxvvu
(5)

In the governing mathematical model (2) is a 
continuity equation, (3) is dynamic and (4) is energy 

equation. For the terms uB2
m  and 22

muB  Lorentz 

force and Joule's heat are determined respectively 15. 
The subscript е stands for physical quantities at the 

outer edge of the boundary layer ( y ) and the 

subscript w denotes the values on the wall of the body 
of revolution ( 0y ). The given velocity ),(w xv  at which 

the gas flows perpendicularly through the porous wall of 
the body of revolution (Fig. 1) can be positive (at 
injection) or negative (at ejection). 
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Fig.1. Ionized gas flow adjacent to the body of revolution 

The continuity equation (2) can be written in a form 
more suitable for derivation of the momentum equation as 
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Here L is a constant length whose value can equal unity. 

III. TRANSFORMATIONS OF THE EQUATIONS

In order to apply the general similarity method, new 
variables are introduced: 
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Here, 0 , 000    and )(w x , )(w x  denote the 

known values of the density and dynamic, i.e., kinematic 
viscosity of the gas at some point of the boundary layer 
(subscript 0) and on the wall of the body of revolution 
(subscript w). 

The stream function ),( zs is introduced using the 

relations: 
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that follow from the continuity equation (6).  
Since the boundary condition for the velocity at the 

inner edge of the boundary layer (5) does not equal zero 
( 0)(w  xvv ), as with incompressible fluid 1, the 

stream function ),( zs  is divided into two parts:  

.0)0,(),,()(),( w  szsszs   (9)

Here, )0,()(w ss    stands for the stream function 

of the flow adjacent to the wall if the body of revolution 
( 0z ). 

Another change is introduced: 
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Applying (7)-(10), the governing equations (3) and (4) 
are transformed into this equation system with the given 
boundary conditions: 
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where prim () stands for a derivative per the variable s. 
During the transformations of the governing equations 

into the system (11), the usual quantities in the boundary 
layer theory 3, 7 are introduced: conditional 

displacement thickness )(s , conditional momentum 

loss thickness )(s , conditional thickness )(1 s ,

nondimensional friction function )(s  and a 

characteristic boundary layer function mF . These 

quantities are defined by the expressions:   
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In the equations of the system (11), there are four 
parameters: basic form parameter f(s), magnetic 
parameter g(s), porosity parameter (s), and local 
compressibility parameter 3 ).(s  They depend on the 

conditions at the outer or inner edge of the boundary layer 
and they are defined  as: 
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where )(w sV  denotes conditional transversal velocity at 

the inner edge of the boundary layer. The local 
compressibility parameter is determined as: 

(14)

In order to bring the governing equation system into a 
generalized form, a new stream function  and 

nondimensional enthalpy h  should be introduced through 
general similarity transformations as:  
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In (15), )( kf denotes a set of form parameters of 

Loitsianskii's type 1, )( kg  stands for a set of magnetic 

parameters and )( k  denotes a set of porosity parameters 

of the porous wall. The introduced sets of parameters are 
new independent variables (instead of the variable s) and 
they are defined as:   
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Each set of parameters (16) satisfies a corresponding 
recurrent simple differential equation:  
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Applying similarity transformations (15) a generalized 
boundary layer equation system is obtained, which in four 
parametric ,0,0( 10  fff  

,0,0 11  gg 0kkk  gf  for )2k   three 

times localized approximation  ,0/,0/( 1  g  

)0/ 1   has the following form: 
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in which the subscript 1 is left out in the first parameters 
and where the characteristic function mF  is determined 

by the relation (12).   
The obtained system of approximate generalized 

equations (18) is a general mathematical model of the 
ionized gas flow in the boundary layer adjacent to the 
porous wall on bodies of revolution. Due to the performed 
localization, the parameters ,0f  g and  became 

simple parameters. Hence, the system (18) is solved for in 
advance given values of these parameters. 

IV. NUMERICAL SOLUTION, RESULTS 

For the function Q and the density ratio  /e , in the 

system (18), analogous to the dissociated air 3, 
approximate dependences are adopted:  
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Since Prandtl number slightly depends on temperature 
3, the equations of the system (18) are solved for a 
constant value of this number 712.0Pr  . For constants a 
and b, the usual values are adopted 2: 4408.0a  and 

.7140.5b      
The system is solved by finite differences method 

using passage method. A concrete numerical solution of 
the system (18) is performed using a programme written 
in FORTRAN.  

Fig.2. Diagram of the nondimensional velocity e/ uu

Only some of the obtained results are given here in the 
form of diagrams. Figure 2 shows the diagram of the 
nondimensional velocity   // euu  for three cross-

sections of the boundary layer.  

Fig.3. Distribution of the nondimensional enthalpy 

The diagram in Fig. 3 presents distribution of the 

nondimensional enthalpy h  for three cross-sections of 
the boundary layer.  

CONCLUSIONS 

This paper has shown that Saljnikov's version of the 
general similarity method can be successfully applied to 
the studied problem.  

The following conclusions can be made: 
 The nondimensional flow velocity u/ue (Fig. 2) at

certain cross-sections of the boundary layer on
bodies of revolution converges very fast towards
unity.

 The nondimensional enthalpy h  converges
relatively fast towards the value at the outer edge of
the boundary layer.

Finally, in order to obtain more accurate results, the 
system (18) should be solved in a four-parametric 
approximation but without localization per the 
compressibility parameter. However, this kind of solution 
is fraught with difficulties, mainly of numerical nature.     
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